Current Electricity

-000	-		-	-64	
0	Ba.	-	8 -	1 -	W
	n	m	- 5	1.2	W

V = Potential; R = Resistance

$$I \propto V$$

$$V = IR$$

$$R = \rho \frac{l}{A}$$

$$\rho = \frac{1}{\sigma}$$

$$R = \rho \frac{l}{A}$$
 $\rho = \frac{1}{\sigma}$ $\rho = \frac{m}{ne^2\tau}$

n = no. of e-, e = electronic charge, $\tau = Relaxation time$, $\sigma = conductivity.$

$$\rho_t = \text{Resistivity at } t^o C;$$

Mobility of electron
$$(\mu)$$

$$\rho_t = \rho_0(1 + \alpha t)$$

$$\rho_0$$
 = Resistivity at 0°C

$$v_d = \frac{eE\tau}{m} = \frac{eV\tau}{ml} = \frac{I}{Ane}$$

$$\mu = \frac{v_d}{E} = \frac{e\tau}{m}$$

EMF of cell(e)=
$$\frac{W}{q}$$

In

Relation between EMF and Internal q Resistance, e = V + Ir

Grouping of Resistors

series	eq	1			n
ln parallel	$\frac{1}{R_{eq}} =$	$=\frac{1}{R_1}$	$+\frac{1}{R_2}$	++	$\frac{1}{R_n}$

Grouping of Cells

In series

In Parallel

$$e_{eq} = e_1 + e_2 + \ldots + e_n = ne$$

$$r_{eq} = r_1 + r_2 + \cdots r_n = nr$$

$$I = \frac{e_{eq}}{(R + r_{eq})} = \frac{ne}{(R + nr)}$$

$$\frac{1}{r_{eq}} = \frac{1}{r_1} + \frac{1}{r_2} + \dots + \frac{1}{r_n} = \frac{n}{r}$$

$$r_{eq} = \frac{r}{n}$$

$$I = \frac{e}{(R + r/n)}$$

Wheatstone Bridge

Bridge is balanced when $I_G = 0$

Meter Bridge

(where, l_1 is the length of wire from one end where null point is obtained)

$$\frac{R_x}{R_1} = \frac{R_3}{R_2}$$

$$\frac{R}{S} = \frac{l_1}{(100 - l_1)}$$

POTENTIOMETER

To Compare EMF of Two Cells

Determination of internal resistance of a cell

$$\frac{e_1}{e_2} = \frac{l_1}{l_2}$$

$$r = \frac{e - V}{V}R = \frac{l_1 - l_2}{l_2}R$$

Kirchhoff's Law

I) Junction Rule The algebraic sum of all currents meeting at a junction in a closed circuit is zero, i.e.

$$\sum I = 0$$

ii) Loop Rule The algebraic sum of all the potential differences in any close circuit is zero, i.e.

$$\sum \Delta V = 0$$

55

NEET 2023 PYQ'S (Chapter 16 Current Elec.)

 The magnitude and direction of the current in the following circuit is: 0.5A from A to B through E

 If the galvanometer G does not show any deflection in the circuit shown, the value of R is given by: 100 ohm

 The equivalent capacitance of the system shown in the following circuit is: 2µF

